REFERENCES: Development and Characterization of a Novel In Vivo Model of BPAN Using CRISPR/Cas9-based Knockout of wdr45 in Zebrafish
​
1. Haack TB, Hogarth P, Kruer MC, Gregory A, Wieland T, Schwarzmayr T, et al. Exome
sequencing reveals de novo WDR45 mutations causing a phenotypically distinct, X-linked dominant
form of NBIA. Am J Hum Genet. 2012;91(6):1144-9.
2. Saitsu H, Nishimura T, Muramatsu K, Kodera H, Kumada S, Sugai K, et al. De novo mutations
in the autophagy gene WDR45 cause static encephalopathy of childhood with neurodegeneration in
adulthood. Nat Genet. 2013;45(4):445-9, 9e1.
3. Hayflick SJ, Kruer MC, Gregory A, Haack TB, Kurian MA, Houlden HH, et al. beta-Propeller
protein-associated neurodegeneration: a new X-linked dominant disorder with brain iron
accumulation. Brain. 2013;136(Pt 6):1708-17.
4. Lu Q, Yang P, Huang X, Hu W, Guo B, Wu F, et al. The WD40 repeat PtdIns(3)P-binding
protein EPG-6 regulates progression of omegasomes to autophagosomes. Dev Cell. 2011;21(2):343-
57.
5. Bakula D, Muller AJ, Zuleger T, Takacs Z, Franz-Wachtel M, Thost AK, et al. WIPI3 and
WIPI4 beta-propellers are scaffolds for LKB1-AMPK-TSC signalling circuits in the control of
autophagy. Nat Commun. 2017;8:15637.
6. Behrends C, Sowa ME, Gygi SP, Harper JW. Network organization of the human autophagy
system. Nature. 2010;466(7302):68-76.
7. Ebrahimi-Fakhari D, Saffari A, Wahlster L, Lu J, Byrne S, Hoffmann GF, et al. Congenital
disorders of autophagy: an emerging novel class of inborn errors of neuro-metabolism. Brain.
2016;139(Pt 2):317-37.
8. Seibler P, Burbulla LF, Dulovic M, Zittel S, Heine J, Schmidt T, et al. Iron overload is
accompanied by mitochondrial and lysosomal dysfunction in WDR45 mutant cells. Brain.
2018;141(10):3052-64.
9. Zhao YG, Sun L, Miao G, Ji C, Zhao H, Sun H, et al. The autophagy gene Wdr45/Wipi4
regulates learning and memory function and axonal homeostasis. Autophagy. 2015;11(6):881-90.
10. Wan H, Wang Q, Chen X, Zeng Q, Shao Y, Fang H, et al. WDR45 contributes to
neurodegeneration through regulation of ER homeostasis and neuronal death. Autophagy.
2020;16(3):531-47.
11. Stewart AM, Braubach O, Spitsbergen J, Gerlai R, Kalueff AV. Zebrafish models for
translational neuroscience research: from tank to bedside. Trends Neurosci. 2014;37(5):264-78.
12. Sakai C, Ijaz S, Hoffman EJ. Zebrafish Models of Neurodevelopmental Disorders: Past,
Present, and Future. Front Mol Neurosci. 2018;11:294.
13. Widrick JJ, Kawahara G, Alexander MS, Beggs AH, Kunkel LM. Discovery of Novel
Therapeutics for Muscular Dystrophies using Zebrafish Phenotypic Screens. J Neuromuscul Dis.
2019;6(3):271-87.
14. Wiley DS, Redfield SE, Zon LI. Chemical screening in zebrafish for novel biological and
therapeutic discovery. Methods Cell Biol. 2017;138:651-79.
15. Thisse B, Thisse C. Fast Release Clones: A High Throughput Expression Analysis. ZFIN
Direct Data Submission (http://zfin.org). 2004.
16. Kok FO, Shin M, Ni CW, Gupta A, Grosse AS, van Impel A, et al. Reverse genetic screening
reveals poor correlation between morpholino-induced and mutant phenotypes in zebrafish. Dev Cell.
2015;32(1):97-108.
17. Stainier DYR, Raz E, Lawson ND, Ekker SC, Burdine RD, Eisen JS, et al. Guidelines for
morpholino use in zebrafish. PLoS Genet. 2017;13(10):e1007000.
18. Hruscha A, Krawitz P, Rechenberg A, Heinrich V, Hecht J, Haass C, et al. Efficient
CRISPR/Cas9 genome editing with low off-target effects in zebrafish. Development.
2013;140(24):4982-7.
19. Hwang WY, Fu Y, Reyon D, Maeder ML, Tsai SQ, Sander JD, et al. Efficient genome editing
in zebrafish using a CRISPR-Cas system. Nat Biotechnol. 2013;31(3):227-9.
20. Albadri S, De Santis F, Di Donato V, Del Bene F. CRISPR/Cas9-Mediated Knockin and
Knockout in Zebrafish. In: Jaenisch R, Zhang F, Gage F, editors. Genome Editing in Neurosciences.
Cham (CH)2017. p. 41-9.